Format
Scientific article
Publication Date
Published by / Citation
Adermark, L., Morud, J., Lotfi, A., Ericson, M., and Söderpalm, B. (2018) Acute and chronic modulation of striatal endocannabinoid‐mediated plasticity by nicotine. Addiction Biology, doi: 10.1111/adb.12598.
Original Language

English

Country
Sweden
Keywords
dopamine
endocannabinoid
synaptic plasticity

Acute and Chronic Modulation of Striatal Endocannabinoid‐Mediated Plasticity by Nicotine

Abstract

The endocannabinoid (eCB) system modulates several phenomena related to addictive behaviors, and drug‐induced changes in eCB signaling have been postulated to be important mediators of physiological and pathological reward‐related synaptic plasticity. Here, we studied eCB‐mediated long‐term depression (eCB‐LTD) in the dorsolateral striatum, a brain region critical for acquisition of habitual and automatic behavior. We report that nicotine differentially affects ex vivo eCB signaling depending on previous exposure in vivo. In the nicotine‐naïve brain, nicotine facilitates eCB‐signaling and LTD, whereas tolerance develops to this facilitating effect after subchronic exposure in vivo. In the end, a progressive impairment of eCB‐induced LTD is established after protracted withdrawal from nicotine. Endocannabinoid‐LTD is reinstated 6 months after the last drug injection, but a brief period of nicotine re‐exposure is sufficient to yet again impair eCB‐signaling. LTD induced by the cannabinoid 1 receptor agonist WIN55,212‐2 is not affected, suggesting that nicotine modulates eCB production or release. Nicotine‐induced facilitation of eCB‐LTD is occluded by the dopamine D2 receptor agonist quinpirole, and by the muscarinic acetylcholine receptor antagonist scopolamine. In addition, the same compounds restore eCB‐LTD during protracted withdrawal. Nicotine may thus modulate eCB‐signaling by affecting dopaminergic and cholinergic neurotransmission in a long‐lasting manner. Overall, the data presented here suggest that nicotine facilitates eCB‐LTD in the initial phase, which putatively could promote neurophysiological and behavioral adaptations to the drug. Protracted withdrawal, however, impairs eCB‐LTD, which may influence or affect the ability to maintain cessation.